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When G is triangle-free, the faces have length at least 4. In this case
2¢e =) f; > 4f, and we obtain e < 2n — 4. [ ]

6.1.24. Example. Nonplanarity of K5 and K3 3 follows immediately from The-
orem 6.1.23. For K5, we have ¢ = 10 > 9 = 3n — 6. Since K33 is triangle-free,
we have ¢ = 9 > 8 = 2n — 4. These graphs have too many edges to be planar. B

6.1.25. Definition. A maximal planar graph is a simple planar graph that
is not a spanning subgraph of another planar graph. A triangulation is
a simple plane graph where every face boundary is a 3-cycle.

6.1.26. Proposition. For a simple n-vertex plane graph G, the following are

equivalent.

A) G has 3n — 6 edges.

B) G is a triangulation.

C) G is a maximal plane graph.
Proof: A < B. For a simple n-vertex plane graph, the proof of Theorem 6.1.23
shows that having 3n — 6 edges is equivalent to 2¢ = 3, which occurs if and
only if every face is a 3-cycle.

B < C. There is a face that is longer than a 3-cycle if and only if there is a
way to add an edge to the drawing and obtain a larger simple plane graph. =

6.1.27. Remark. A graph embeds in the plane if and only if it embeds on a
sphere. Given an embedding on a sphere, we can puncture the sphere inside a
face and project the embedding onto a plane tangent to the opposite point. This
yields a planar embedding in which the punctured face on the sphere becomes
the unbounded face in the plane. The process is reversible. [ ]

6.1.28. Application. Regular polyhedra. Informally, we think of a regular
polyhedron as a solid whose boundary consists of regular polygons of the same
length, with the same number of faces meeting at each vertex. When we expand
the polyhedron out to a sphere and then lay out the drawing in the plane as in
Remark 6.1.27, we obtain a regular plane graph with faces of the same length.
Hence the dual also is a regular graph.

Let G be a plane graph with n vertices, ¢ edges, and f faces. Suppose
that G is regular of degree k and that all faces have length /. The degree-sum
formula for G and for G* yields kn = 2¢ = [f. By substituting for n and f in
Euler’s Formula, we obtain e(% -1+ %) = 2. Since ¢ and 2 are positive, the
other factor must also be positive, which yields (2/k) + (2/1) > 1, and hence
21 + 2k > kl. This inequality is equivalent to (k — 2)(/ — 2) < 4.

Because the dual of a 2-regular graph is not simple, we require that k, I > 3.
Now (k — 2)(I — 2) < 4 also requires k, ! < 5. The only integer pairs satisfying
these requirements for (k, [) are (3, 3), (8, 4), (3, 5), (4, 3), and (5, 3).

Once we specify k and [, there is only one way to lay out the plane graph
when we start with any face. Hence there are only the five Platonic solids listed
below, one for each pair (k, I) that satisfying the requirements. [ ]
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kI (k—2)(1—-2) e n f name

3 3 1 6 4 4 tetrahedron

3 4 2 12 8 6 cube

4 3 2 12 6 8 octahedron

3 5 3 30 20 12 dodecahedron

5 3 3 30 12 20 icosahedron
EXERCISES

6.1.1., (—) Prove or disprove:
a) Every subgraph of a planar graph is planar.
b) Every subgraph of a nonplanar graph is nonplanar.

6.1.2, (—) Show that the graphs formed by deleting one edge from K5 and K33 ; are planar.
6.1.3. (—) Determine all r, s such that K, ; is planar.

6.1.4. (—) Determine the number of isomorphism classes of planar graphs that can be
obtained as planar duals of the graph below

6.1.5. (—) Prove that a plane graph has a cut-vertex if and only if its dual has a cut-
vertex.

6.1.6. (—) Prove that a plane graph is 2-connected if and only if for every face, the
bounding walk is a cycle.

6.1.7. (—) A maximal outerplanar graph is a simple outerplanar graph that is not a
spanning subgraph of a larger simple outerplanar graph. Let G be a maximal outerpla-
nar graph with at least three vertices. Prove that G is 2-connected.

6.1.8. (—) Prove that every simple planar graph has a vertex of degree at most 5.

6.1.9. (-) Use Theorem 6.1.23 to prove ffiat every simple planar graph with fewer than
12 vertices has a vertex of degree a' t 4.

6.1.10. (—) Prove or disprove: There is no simple bipartite planar graph with minimum
degree at least 4.

6.1.11. (-) Let G be a maximal planar graph. Prove that G* is 2-edge-connected and
3-regular.

6.1.12. (-) Draw the five regular polyhedra as planar graphs. Show that the octahedron
is the dual of the cube and the icosahedron is the dual of the dodecahedron.

[ ] [ ] L] L] L]
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6.1.13.\Find a planar embedding of the graph below.

6.1.14. Prove or disprove:
graph with more than n v

6.1.16. Let Fbeafi ntinuously in the plane without retracing any seg-
ment, ending af; the/tart (this ¢ viewed as an Eulerian graph). Prove that F can
lowing the pencN point to cross what has already been drawn. For

example, the fi below has two tradersals; one crosses itself and the other does not.

6.1.17. Prove or disprove: If G is a 2-connected simple plane grapyi with minimum
degree 3, then the dud] graph G* is simple.

6.1.18. Given a plane ghaph G, draw the dual graph G* so that each flual edge intersects
its corresponding edge in\G and no other edge. Prove the following.
a) G* is connected.
b) If G is connected, then each face of G* contains exactly ghe vertex of G.
¢) (G*)* = G if and only\if G is connected.

6.1.19. Let G be a plane grapk. Use induction on e(G) to pgove Theorem 6.1.14: a set
D c E(G) is a cycle in G if and\pnly if the corresponding gét D* C E(G") is a bond in
G*. (Hint: Contract an edge of D hqd apply Remark 6.1.1%/.

6.1.20. Prove by induction on the number of faces that/a plane graph G is bipartite if
and only if every face has even length.

6.1.21. (!) Prove that a set of edges in a conneg:
of G if and only if the duals of the remaining &

6.1.22, The weak dual of a plane graph G is
by deleting the vertex for the unbounded face f
outerplane graph is a forest.

6.1.23. (!) Directed plane graphs. Let G be gplane g
G. The dual D" is an orientation of G* sylch that whei

dges form a spanning tree of G*.

e graph obtained from the dual G*
G. Prove that the weak dual of an

aph, and let D be an orientation of
an edge of D is traversed from
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tail to head, the'dual edge in D* crosses it from right to left. For exa
edges below are in

ple, if the solid

Prove that if D is strongly connect®
Conclude that if D is strongly conne

a) Use polygonal curves (not Euler’s Formul®») to prove by/induction on n(G) that
every planar embedding of a tree G has one face.

b its dual has 2n — 2 edges.
ic to its dual.

6.1.25. (!) Prove that every n-vertex plane graph isomorphi
For all n = 4, construct a simple n-vertex plane graph isomonp

6.1.26. Determine the maximum number of edges in a simgle ouberplane graph with n
vertices, giving three proofs.
a) By induction on n.
b) By using Euler’s Formula.
¢) By adding a vertex in the unbounded face and usfng Theorem 6.1.23.

6.1.27. Let G be a connected 3-regular plane graph irf which every vertex lies ol one
face of length 4, one face of length 6, and one face of lepgth 8.

a) In terms of n(G), determine the number of facgs of each length.

b) Use Euler’s Formula and part (a) to determing the number of;,faces of G.

6.1.28. Lt C be a closed curve bounding a convex fegion in the plane. Suppose that m
chords of C hge drawn so that no three share a point and no twg/hare an endpoint. Let
p be the numbby of pairs of chords that cross. In terms of m aid p, compute the number
of segments and dhe number of regions formed inside C. (Adexanderson-Wetzel [1977])

6.1.29. Prove that the complement of a simple planar graph with at least 11 vertices is
nonplanar. Construct axgelf-complementary simple planar graph with 8 vertices.

6.1.30. (!) Let G be an n-ve
most (n — 2);%; edges. Use thig
6.1.31. Let G be the simplegraph wigh vertex set v1,...,v, whose edges are
{vivj: li — j| < 8). Prove that G is a\paxipfal planar graph.

6.1.32. Let G be a maximal planar gr}
then G* — § has two components. (ChAppe

6.1.33. (!) Let G be a triangulatiop
G. Prove that 3 (6 — i)n; = 12.

6.1.34. Construct an infinite
such that each has exactly 1% vertices of degree 5. (B

oh. Prove that if § is a separating 3-set of G*,
1)

be the number of vertices of degree i in

Amily of simple planar graphs with minimum degree 5
int: Modify the dodecahedron.)

four vertices with de less than 6. For each even value\of n with n > 8, construct an
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6.1.36. Let S be a set of n points in the plane such that for all x, y € §, the distance in
the plane between x and y is at least 1. Prove thgt there are at most 3n — 6 pairs u, v in
S such that the distance in the plane betweenY/and v is exactly 1.

6.1.87. Given integers k > 2,/ > 1, and kI
k faces in which every face has length /.

struct a planar graph with exactly

6.2. Characterization of Planar Graphs

Which graphs embed in the plane? We have proved that K5 and K33 do
not. In fact, these are the crucial graphs and lead to a characterization of pla-
nar graphs known as Kuratowski’s Theorem. Kasimir Kuratowski once asked
Frank Harary about the origin of the notation for K; and K3 3. Harary replied,
“The K in Kj stands for Kasimir, and the K in K33 stands for Kuratowski!”

Recall that a subdivision of a graph is a graph obtained from it by replacing
edges with pairwise internally-disjoint paths (Definition 5.2.19).

a subdivision of K3 3

6.2.1. Proposition. If a graph G has a subgraph that is a subdivision of K5 or
K33, then G is nonplanar.

Proof: Every subgraph of a planar graph is planar, so it suffices to show that
subdivisions of K3 and K33 are nonplanar. Subdividing edges does not affect
planarity; the curves in an embedding of a subdivision of G can be used to
obtain an embedding of G, and vice versa. [ ]

By Proposition 6.2.1, avoiding subdivisions of K5 and K33 is a necessary
condition for being a planar graph. Kuratowski proved TONCAS:

6.2.2. Theorem. (Kuratowski [1930]) A graph is planar if and only if it does
not contain a subdivision of K or K3 3. |

Kuratowski’s Theorem is our goal in the first half of this section, after
which we will comment on other characterizations of planar graphs.

When G is planar, we can seek a planar embedding with additional prop-
erties. Wagner [1936], Fary [1948], and Stein [1951] showed that every finite
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simple planar graph has an embedding in which all edges are straight line seg-
ments; this is known as Fary’s Theorem (Exercise 6). For 3-connected planar
graphs, we will prove the stronger property that there exists an embedding in
which every face is a convex polygon.

PREPARATION FOR KURATOWSKI’S THEOREM

We introduce short names for subgraphs that demonstrate nonplanarity.

6.2.3. Definition. A Kuratowski subgraph of G is a subgraph of G that is
a subdivision of K5 or K3 3. A minimal nonplanar graph is a nonplanar
graph such that every proper subgraph is planar.

We will prove that a minimal nonplanar graph with no Kuratowski sub-
graph must be 3-connected. Showing that every 3-connected graph with no Ku-
ratowski subgraph is planar then completes the proof of Kuratowski’s Theorem.

6.2.4. Lemma. If F is the edge set of a face in a planar embedding of G, then
G has an embedding with F being the edge set of the unbounded face.

Proof: Project the embedding onto the sphere, where the edge sets of regions
remain the same and all regions are bounded, and then return to the plane by
projecting from inside the face bounded by F. [ ]

6.2.5. Lemma. Every minimal nonplanar graph is 2-connected.

Proof; Let G be a minimal nonplanar graph. If G is disconnected, then we
embed one component of G inside one face of an embedding of the rest.

If G has a cut-vertex v, let Gy, ..., G; be the {v}-lobes of G. By the mini-
mality of G, each G; is planar. By Lemma 6.2.4, we can embed each G; with v
on the outside face. We squeeze each embedding to fit in an angle smaller than
360/k degrees at v, after which we combine the embeddings at v to obtain an
embedding of G. [ ]

6.2.6. Lemma. Let § = {x, y} be a separating 2-set of G. If G is nonplanar,
then adding the edge xy to some S-lobe of G yields a nonplanar graph.

Proof: Let Gy, ..., Gy be the S-lobes of G, and let H; = G; Uxy. If H, is planar,
then by Lemma 6.2.4 it has an embedding with xy on the outside face. For each
i > 1, this allows H; to be attached to an embedding of U;;ll H; by embedding
H; in a face that has xy on its boundary. Afterwards, deleting the edge xy if it
is not in G yields a planar embedding of G. o

The next lemma allows us to restrict our attention to 3-connected graphs
in order to prove Kuratowski’s Theorem. The hypothesized graph doesn’t exist,
but if it did, it would be 3-connected.
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6.2.19. Theorem. (Demoucron—Malgrange-Pertuiset [1964]) Algorithm 6.2.17
produces a planar embedding if G is planar.

Proof: We may assume that G is 2-connected. A cycle appears as a simple
closed curve in every planar embedding. Since we can reflect the plane, every
embedding of a cycle in a planar graph G extends to an embedding of G.

Hence Gq extends to a planar embedding of G if G is planar. It suffices to
show that if the plane graph G; is extendable to a planar embedding of G and
the algorithm produces a plane graph G, from G;, then G, also is extendable
to a planar embedding of G. Note that every G;-fragment has at least two
vertices of attachment, since G is 2-connected,

If some G;-fragment B has [ F(B)| = 1, then there is only one face of G; that
can contain P in an extension of G; to a planar embedding of G. The algorithm
puts P in that face to obtain G, 1, so in this case G;, is extendable.

Problems can arise only if | F(B)| > 1 for all B and we select the wrong face
in which to embed a path P from the selected fragment. Suppose that (1) we
embed P in face f € F(B), and (2) G; can be extended to a planar embedding
G of G in which P is inside face f' € F(B). We modlfy G to show that G; can
be extended to another embedding G’ of G in which P is inside f. This shows
that our chcice causes no problem, and the constructed G,;, is extendable.

Let C be the set of vertices in the boundaries of both f and f'; this includes

the vertices of attachment of B. We draw G’ by switching between f and f’ all
G;-fragments that G places in f or f’ and whose vertices of attachment lie in C.
We show this on the left below, where edges of G not present in G; are dashed.

The change switches B and produces the desired embedding G’ unless some
unswitched G;-fragment B conflicts with a switched fragment. Since the switch
is sym.met.nc in f and f' and changes only their interiors, we may assume that
B appears in f in G. “Conflict” means that G has some B’ in f’, which we are
trying to move to f, such that B and B’ are adjacent in the conflict graph of f.

Let A, A’ denote the vertex sets where B, B' attach to the boundary of £.
‘Since B and B’ conflict, A, A’ have three common vertices or four alternating
vertices on the boundary of f. Since A’ € C but A € C, the first possibility
implies the second. Let x,u, y, v be the alternation, with x,y € A" € C and
u,v € A. We may assume that u ¢ C, as shown on the right above,; if there is
no such alternation, then B, B’ do not conflict or B can switch to f’.

Since u ¢ C and y is between « and v on f, no other face contains both «
and v. Thus B fails to have its vertices of attachment contained in at least two
faces, contradicting the hypothesis that | F(B)| > 1. ]
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We can begin by checking that G has at most 3n — 6 edges, maintain ap-
propriate lists for the face boundaries, and perforin the other operations via
searches of linear size. Thus this algorithm runs in quadratic time. The proof
of Kuratowski’s Theorem by Klotz [1989] also gives a quadratic algorithm to
test planarity, and it finds a Kuratowski subgraph when G is not planar.

EXERCISES

6.2.1. (—) Prove that the complement of the 3-dimensional cube Q; is nonplanar.

6.2.2.' (—) Give three proofs that the Petersen graph is nonplanar.
a) Using Kuratowski’s Theorem.
b) Using Euler’s Formula and the fact that the Petersen graph has girth 5.
¢) Using the planarity-testing algorithm of Demoucron—-Malgrange—Pertuiset.

6.2.3. (—) Find a convex embedding in the plane for the graph below.

6.2.4, (—) For each graph below, prove nonplanarity or provide a convex embedding.

6.2.5. Determine the minimum number of edges that must be deleted from the Petersen
graph to obtain a planar subgraph.

6.2.8. () Fary's Theorem. Let R be f region in the plane bounded by a simple polygon
with at most five sides (simp n means the edges are line segments that do not
cross). Prove there is a point x infide R that “sees” all of R, meaning that the segment
from x to any point of R does not, the boundary of R. Use this to prove inductively
that every simple planar graph
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6.2.7. (1) Use Kuratowski’s Theorem to prove that G is o
no subgraph that is a subdivision of K, or Ky 3. (Hint: To ap) ratowski’s Theorem,
find an appropriate modification of G. This is much easier thapdrying to mimic a proof

of Kuratowski’s Theorem.)
6.248. (1) Prove that every 3-connected graph with at least six vertices that contains a

bdivision of K also contains a subdivision of K3 3. (Wagner [1937])

fand only if it has

6.2.9. (+) For n > 5, prove that the maximum number of edges in a simple planar n-
vertex graph not having two\disjoint cycles is 2n — 1. (Cojnment: Compare with Exercise
5.2.28.) (Markus [1999])

6.2.10. (!) Let f(n) be the ms
taining no K3 ;-subdivision.
a) Given that n — 2 is divisifle by 3, construct a griph to show that f(n) = 3n — 5.
b) Prove that f(n) = 3n — 5 When n — 2 is divisibl¢ by 3 and that otherwise f(n) =
8n — 6. (Hint: Use induction on Y1, invoking Exercise 6.2.8 for the 3-connected case.)
(Thomassen [1984])
(Comment: Mader [1998] pro
mum number of edges in an n-ve

imum number of edges in a simple n-vertex graph con-

ed the more difficult result that 3n — 6 is the maxi-
ek simple graph witll no K;5-subdivision.)

6.2.11. (!) Let H be a graph with m
contains a subdivision of H if and on

6.2.12. (!) Wagner [1937] proved that
for a graph G to be planar: neither K;\nor K3 3 can be
deletions and contractions of edges.

a) Show that deletion and contracti§n of edges g
this that Wagner’s condition is necessary.

ximum degree atl most 3. Prove that a graph G
v if G contains a spbgraph contractible to H.

he following condition is necessary and sufficient
obtained from G by performing

eserve planarity. Conclude from

gragh G. Prove that G has a planar em-
bedding with x and y on the same face unléss G — x — y has a cycle C with x and y
Cviratowski’s Theorem. Comment: Tutte
proved this without Kuratowski’s Theorem andfused it to prove Kuratowski’s Theorem.)

P — {p1, pz} such that 1) no point of P is ifiside p; pzp,\and 2) some line / through p sep-
arates p; from p;, meets P only at p, a i — 2 points of P on the side of /
containing ps.

b) Prove that G has a straight-ine embedding with its vertices mapped onto P.
at if vy, vo are two consecutive
vertices of the unbounded face of a sthaximal outerplanar gkaph G, and p,, p» are consec-
utive vertices of the convex hull off P, then G can be straight-line embedded on P such
that f(v1) = p1 and f(vs) = ps.) (Gritzmann—Mehar-Pach—Yollack [1989])
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6.3. Parameters of Planarity

Every property and parameter we have studied for general graphs can be
studied for planar graphs. The problem of greatest historical interest is the
maximum chromatic number of planar graphs. We will also study parameters
that measure how far a graph is from being a planar graph.

COLORING OF PLANAR GRAPHS

Because every simple n-vertex planar graph has at most 3n — 6 edges, such
a graph has a vertex of degree at most 5. This yields an inductive proof that
planar graphs are 6-colorable (see Exercise 2). Heawood improved the bound.

6.3.1. Theorem. (Five Color Theorem—Heawood [1890]) Every planar graph
is 5-colorable.

Proof: We use induction on n(G).

Basis step: n(G) < 5. All such graphs are 5-colorable.

Induction step: n(G) > 5. The edge bound (Theorem 6.1.23) implies that
G has a vertex v of degree at most 5. By the induction hypothesis, G — v is
5-colorable. Let f: V(G — v) — [5] be a proper 5-coloring of G — v. If G is not 5-
colorable, then f assigns each color to some neighbor of v, and hence d(v) = 5.
Let vy, vs, v3, v4, vs be the neighbors of v in clockwise order around v. Name the
colors so that f(v,) =i.

Let G; ; denote the subgraph of G — v induced by the vertices of colors i
and j. Switching the two colors on any component of G, ; yields another proper
5-coloring of G — v. If the component of G; ; containing v; does not contain v;,
then we can switch the colors on it to remove color i from N(v). Now giving
color i to v produces a proper 5-coloring of G. Thus G is 5-colorable unless, for
each choice of i and j, the component of G, ; containing v; also contains v;. Let
Pj.j be a path in G;'_j from v; to vj, illustrated below for (i, j)= (1, 3).

1 3 1
5 3

<

Consider the cycle C completed with Py 3 by v; this separates vy from vy,
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a bouquet of 2y loops. For example, the double torus can also be represented
by an octagon with boundary By da~18 1y 1571, o

o

B2 B

ap
oy
B2 B
(23]

6.3.23. Remark. Euler’s Formula for S,. A 2-cell is a region such that every
closed curve in the interior can be continuously contracted to a point. A 2-cell

embedding is an embedding where every region is a 2-cell, Euler’s Formula
generalizes for 2-cell embeddings of connected graphs on S, (Exercise 35) as

n—e+ f=2-2y.

For example, our embedding of K7 on the torus (y = 1) has 7 vertices, 21
edges, 14 faces, and 7 — 21 + 14 = 0. The proof of Euler’s Formula for S, is like
the proofin the plane, except that the basis case of 1-vertex graphs needs more
care. It requires showing that it takes 2y cuts to lay the surface flat (that is, to
obtain a 2-cell embedding of a graph with one vertex and one face). [ |

6.3.24. Lemma. Every simple n-vertex graph embedded on S, has at most
3(n — 2 + 2y) edges.

Proof: Exercise 35. L

Note that K; satisfies Lemma 6.3:24 with equality on the torus (y = 1), as
every face in the toroidal embedding of K7 is a 3-gon. Hence K is a maximal
toroidal graph. Rewriting e < 3(n — 2+ 2y) yields a lower bound on the number
of handles we must add to obtain a surface on which G is embeddable; thus
¥(G) = 1+ (e — 3n)/6.

Lemma 6.3.24 leads to an analogue of the Four Color Theorem for §, .

6.3.25. Theorem. (Heawood’s Formula—Heawood [1890]) If G is embeddable
on 5, with y > 0, then x(G) < |_(7 + 1+ 48y)f2J.

Proof: Let ¢ = (7 + /1 + 48y)/2. It suffices to prove that every simple graph
embeddable on 5, has a vertex of degree at most ¢ — 1; the bound on x(G) then
follows by induction on n(G). Since x(G) < c for all graphs with at most ¢
vertices, so need only consider n(G) > c.

We use Lemma 6.3.24 to show that the average (and hence minimum) de-
gree is at most ¢ — 1. The second inequality below follows from ¥ > 0and n > c.
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Since ¢ satisfies ¢ — Tc + (12 — 12y) =0, we have c — 1 = 6 — (12 — 12y)/c, so
the average degree satisfies the desired bound.
% z 6(n —2+2y) <im 12 - 12y
n n c

=c-1 ]

The key inequality here fails when y = 0. Thus the argument is invalid
for planar graphs, even though the formula reduces to x(G) < 4 when y = 0.
Proving that the Heawood bound is sharp involves embedding K, on S, with
¥ = [(n — 3)(n — 4)/12]. The proof breaks into cases by the congruence class of
n modulo 12 (K7 is the first example in the easy class). Completed in Ringel-
Youngs [1968], it comprises the book Map Color Theorem (Ringel [1974]).

Having considered the coloring problem on S, , one naturally wonders which
graphs embed on S,. Planar graphs have many characterizations, beginning
with Kuratowski’s Theorem (Theorem 6.2.2) and Wagner’s Theorem (Exercise
6.2.12). On any surface, embeddability is preserved by deleting or contracting
an edge. Thus every surface has a list of “minor-minimal” obstructions to em-
beddability. Wagner’s Theorem states that the list for the plane is (K33, K5};
every nonplanar graph has one of these as a minor.

More than 800 minimal forbidden minors are known for the torus. For each
surface, the list is finite; this follows from the much more general statement
below (the subdivision relation in Kuratowski’s Theorem leads to infinite lists).

6.3.26. Theorem. (The Graph Minor Thecrem—Robertson-Seymour [1985])
In any infinite list of graphs, some graph is a minor of another. [ ]

This is perhaps the most difficult theorem known in graph theory. The
complete proof takes well over 500 pages (without computer assistance) in a se-
ries of 20 papers stretching beyond the year 2000. It has many ramifications
about structure of graphs and complexity of computation. The techniques in-
volved in the proof have spawned new areas of graph theory. Some aspects of
these techniques and their relation to the proof of the Graph Minor Theorem
are presented in the final chapter of the text by Diestel [1997]. '

EXERCISES

6.3.1. (—) State a polynomial-time algorithm that takes an arbitrary planar graph as
input and produces a proper 5-coloring of the graph.

6.3.2. (—) A graph G is k-degenerate if every sibgraph of G has a vertex of degree at
most k. Prove that every k-degenerate graph is k + 1-colorable.

6.3.3. (—) Use the Four Color Theorem to prove that every outerplanar graph is 3-
colorable. '

6.3.4. (—) Determine the crossing numbers of K;22.2, Ks.4, and the Petersen graph.

L] L] L] L] L
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6.3.5. Prove that every planar graph decomposes into two bipartite graphs. -(I{edetnienﬁ
[1969], Mabry [1995])

6.3.6. Without using the Four Color Theorem, prove that every planar graph with at
most 12 vertices is 4-colorable. Use this to prove that every planar graph with at most
32 edges is 4-colorable.

6.3.7. (1) Let H be a configuration in a planar triangulation (Definition 6.3.2). Let H'
be obtained by labeling the neighbors of the ring vertices with their degrees and then
deleting the ring vertices. Prove that H can be retrieved from H’.

6.3.8. Create a confjguration with ring size 5 in a planar triangulation such that every
internal vertex has degree at least five.

jze at most four is re-
ducible. (Hint: The ring is a separating cycle C. Prove that if smfaller triangulations are

ony/G 1 by addmg the three vertices
xi—2. The graph Gj is shown on the

a, xo, X1, Y1, 21 in order. k > 1, G, is obtained
Xk, Y, 2x and the five edges\e_1 ¢, Xeye, YeZe, Z6Yi-1
left below. (Fraughnaugh [1985])

Xo Xy

R

6 graphs as follows. Let G, be C4. For n > 1, obtain
e surrounding G,_;, making each vertex of the new
ive vertices of the previous outside face. The graph
bve that if n is even, then every proper 4-coloring of
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6.3.13. An art gallery with walls is a p
“walls” that join vertices. Each interior
guard in a doorway can see everything in
a doorway cannot see past a wall. Determi
walled art gallery with n vertices, it is
point is visible to some guard. (Hutchins

6.3.14. (+) Prove that a maxim

n plus some nonintersecting chords called
11 has a tiny opening called a “doorway”. A
0 neighboring rooms, but a guard not in
e minimum number ¢ such that for every
sible to place ¢ guards so that every interior
[1995], Kiindgen [1999])

lanaf graph is 3-colorable if and only if it is Eulerian.
(Hint: For sufficiency, use induct n(G). Choose an appropriate pair or triple of
adjacent vertices to replace with a riate edges.) (Heawood [1898])

6.3.15. (1) Prove that the vertices/f an duterplanar graph can be partitioned into two
sets so that the subgraph induced by each set\is # disjoint union of paths. (Hint: Define
the partition using the parity of the distancy/from a fixed vertex.) (Akiyama-Era-
Gervacio [1989], Goddard [1991])

6.3.16. (—) Prove that the 4-dimensional cube Q, is nonplanar. Decompose it into two
isomorphic planar graphs; hence Q4 has thickness 2.

6.3.17. Prove that K, has\thickness at least LLJ (Hint: |- ] = |_”' 'J ) Show
that equality holds for Kg By finding a self-mmplementary plgnar graph with 8 ver-
tices. (Comment: The thickness equals [";7 except that K9 and Ko have thick-
ness 3; Beineke—Harary [196§] for n # 4 mod 6, and Aleksgev—Gonéakov [1976] for
n=4mod86.)

6.3.18. Decompose Kj into thred pairwise-isomorphic plangr graphs.

6.3.19. Prove that if G has thickiess 2, then x(G) < 12. /Use the two graphs below to
show that x (G) may be as large as\9 when G has thicknegs 2. (Sulanke)

4

|

6.3.21. Determine v(Kj g 322) and usg/it to compute v{K3222).

6.3.22. Prove that K332 2 has no plgnar subgraph with 45 edges. Use this to give another
proof that v(K3z2) > 2.

6.3.23. Let M, be the graph obtai adding chords between ver-
tices that are opposite (if n isfeven) or nearly opposite (ikn is odd). The graph M, is
3-regular if n is even, 4-reguldr if n is odd. Determine v(M,)\ (Guy—Harary [1967])

6.3.24. The graph P* has v¢rtex set [r] and edge set {ij: i —\| < k}. Prove that P} is
a maximal planar graph. Use a planar embedding of P? to proye that v(P}) = n - 4.
(Harary-Kainen [1993])
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6.3.25. For every positivd integer &, construct a graph that embeds on the torus but
requires at least k crossings when drawn in the plane. (Hint: A single easily described
toroidal family suffices; uge Proposition 6.3.13.)

6.3.26. (!) Use Kleitman'$ computation that v(Kg,) = 6 [%J ‘_%J to give counting
arguments for the following lower bounds.
) v(Kma) = m252 [ 3\ | %52 ]. (Guy [1970])
b) v(K,) = zp* + O(pY).
6.3.27. (1) It is conjectured

conjecture holds for K,,, and
for K10 (Kleitman [1970])

at v(Kma) = | l_"' 1] "}.J |_"J Suppose Wa
that m is odd. Provethat the conjecture thep

edges cross at most once and
V(Kpm) is odd when m — 3 and

6.3.29. Suppose that n is odd. P
of pairs of edges that cross is the 3¢ :
to 1 or 3 modulo 8 and is odd when, » is sdhigruent to 5 or 7 modulo 8.

6.3.30. (!) It is known that v(C,,02Y\ = (n — 2)n if m < min{5, n}. Also v(K40C,) =
e to\establish the upper bounds.

#(K,.) < f(n) < 3()-
b) Show that U(Kag 2) = 2 and v(K331) = 3. Show that 5 < v(K332) < 7 and

6.3.32. (x) Construct an embedd'mg of a 3-regular nonbipartite simple graph on the
torus so that every face has even length.

6.3.33. (*) Suppose that n is at least 9 and is not a prime or twice a prime. Construct a
6-regular toroidal graph with n vertices.

6.3.34. (%) An embedding of a graph on a surface is regular if its faces all have the
same length. Construct regular embeddings of K4 4, K36, and Kg 3 on the torus.

6.3.35. () Prove Euler’s Formulafor genus y: For every 2-cell embedding of a graph
on the surface S,, the numbers of vertices, edges, and faces satisfyn —e + f = 2 — 2y.
Conclude that an n-vertex graph embeddable on S, has at most 3(n — 2 + 2y) edges.

6.3.36. (x) Use Euler’s Formula for S, to prove that y(K33,) = n — 2, and determine
the value exactly for n < 3.

6.3.37. () For every positive integer k, use Euler’s Formula for higher surfaces to prove
that there exists a planar graph G such that y(G D Kz) > k.

Chapter 7

Edges and Cycles

7.1. Line Graphs and Edge-coloring

Many questions about vertices have natural analogues for edges. Inde-
pendent sets have no adjacent vertices; matchings have no “adjacent” edges.
Vertex colorings partition vertices into independent sets; we can instead parti-
tion edges into matchings. These pairs of problems are related via line graphs
(Definition 4.2.18). Here we repeat the definition, emphasizing our return to
the context in which a graph may have multiple edges. We use “line graph” and
L(G) instead of “edge graph” because E(G) already denotes the edge set.

7.1.1. Definition. The line graph of G, written L(G), is the simple graph
whose vertices are the edges of G, with ef € E(L(G)) when ¢ and f have a
common endpoint in G.

o@@

L(G)

Some questions about edges in a graph G can be phrased as questions
about vertices in L(G). When extended to all simple graphs, the vertex question
may be more difficult. If we can solve it, then we can answer the original
question about edges in G by applying the vertex result to L(G).

In Chapter 1, we studied Eulerian circuits. An Eulerian circuit in G yields
a spanning cycle in the line graph L(G). (Exercise 7.2.10 shows that the con-
verse need not hold!) In Section 7.2, we study spanning cycles for graphs in
general. As discussed in Appendix B, this problem is computationally difficult.

In Chapter 3, we studied matchings. A matching in G becomes an inde-
pendent set in L(G). Thus ¢'(G) = «(L(G)), and the study of o' for graphs is
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